Graphics in SAS SGPLOT illustrating ANOVA analysis results.
- Oct 29, 2019
 - 2 min read
 
Output and graphics from statistical programming packages are often time-consuming to read and interpret. In peer-reviewed publications you usually provide both a written assessment, tables and graphics illustrating data and analysis results. ANOVA analysis is still a very common analysis technique and it is possible to beautify the output from analysis using PROC SGPLOT
ods graphics;
proc format lib=work;
value timevar
12=’0-12 hrs’
18=’12-18 hrs’
24=’18-24 hrs’
32=’Cumulated 0-24 hrs’
;
run;
proc sql;
  create table estimates
    (  Treatment char(12) label=’Treatment Group’
     , Time      num      label=’Visit number’
     , Time2     num      label=’Visit number’
     , TimeVar   char(18) label=’Visit number’
     , Mark      char(8)  label=’p values’
     , Est       num      label=’Est’
     , LCL       num      label=’LCL’
     , UCL       num      label=’UCL’
    )
  ;
insert into estimates
values(‘Control’, 12, 12,  ‘0-12 hrs’, ”,87.5000,65.9552,109.0448)
values(‘Control’, 18, 18, ’12-18 hrs’, ”,23.1250,15.7518,30.4982)
values(‘Control’, 24, 24, ’18-24 hrs’, ”,16.8750,10.3570,23.3930)
values(‘Control’, 32, .,’Cumulated 0-24 hrs’, ”,127.7083,101.1505,154.2661)
values(‘Intervention’, 12, 12, ‘0-12 hrs’, ‘p=0.0159’,50.0000,28.4552,71.5448)
values(‘Intervention’, 18, 18, ’12-18 hrs’, ‘p=0.0256’,11.2500,3.8768,18.6232)
values(‘Intervention’, 24, 24, ’18-24 hrs’, ‘p=0.0462’,7.5000,0.9820,14.0180)
values(‘Intervention’, 32, .,’Cumulated 0-24 hrs’, ‘p=0.0023’,69.3750,42.8172,95.9328)
  ;
quit;
title ‘Morphine consumption during postop’;
proc sgplot data=estimates;   format Time Time2 timevar.;   scatter x=Time y=est / yerrorlower=LCL yerrorupper=UCL group=Treatment groupdisplay=cluster clusterwidth=0.2 errorbarattrs=(thickness=1) datalabel=Mark DATALABELPOS=BOTTOMRIGHT DATALABELATTRS=(color=BLACK);   series  x=Time2 y=est / lineattrs=(pattern=solid) group=Treatment groupdisplay=cluster clusterwidth=0.2 lineattrs=(thickness=2) name=’s’;   yaxis label=’Mean with 95% CL’ grid;   xaxis display=(nolabel);   keylegend ‘s’ / title=’Treatment’; run;
proc sgplot data=estimates;   format Time Time2 timevar.;   scatter x=Time y=est / yerrorlower=LCL yerrorupper=UCL group=Treatment groupdisplay=cluster clusterwidth=0.2 errorbarattrs=(thickness=1) DATALABELPOS=BOTTOMRIGHT DATALABELATTRS=(color=BLACK);   series  x=Time2 y=est / lineattrs=(pattern=solid) group=Treatment groupdisplay=cluster clusterwidth=0.2 lineattrs=(thickness=2) name=’s’;   yaxis label=’Mean with 95% CL’ grid;   xaxis display=(nolabel); run;






Comments