top of page
Search

Up-and-down dose response study design

Dose response model and biased coin up-and-down design estimating EV90. A simulation study with a boundary condition and addition of auxilliary data points. PAVA estimators and 2 parameter isotonic regression. 


Experimental Spreadsheet from study with reporting sheet and random numbers sheet, latter should be blinded during the course of the experiment. The study had a minimum of 25 patients.

 #Upper boundary of 30 (mL), steps of 2 (mL) 
 #Estimat for number of patients 
 ANTAL<-NULL  
 MU_1<-NULL  
 MU_2<-NULL  
 MU_3<-NULL  
 EV90<-NULL  
 library(Iso)  
 library(drc)  
 iter<-1  
 while(iter<=10000){  
 #MEV  
 MEV<-0.9  
 #Start dose  
 V<-20  
 #From previous study start dose is probably around MEV92  
 P<-0.92-(30-V)*0.014  
 #Defining vectors for simulation  
 succes<-0  
 coins<-0  
 kt<-1  
 #Increase in dose if failure  
 dosedeltaNeg<-2  
 dosedeltaPos<-2  
 while(V[kt]<30){  
  coins[kt]<-runif(1)  
  if(coins[kt]>P[kt]){  
   #If we observe a failure then increase dosis  
   succes[kt]<-0  
   V[kt+1]<-V[kt]+dosedeltaNeg  
   #We estimate effect a dose increase based on empirical data  
   P[kt+1]<-P[kt]+0.014  
  }   
  else {  
   #If we do not observe a failure then   
   #there is a (1-MEV)/MEV probability of a dose decrease  
   succes[kt]<-1  
   V[kt+1]<-V[kt]-dosedeltaPos*(runif(1)<=((1-MEV)/MEV))  
   #We estimate effect a dose decrease based on empirical data  
   P[kt+1]<-P[kt]+(V[kt+1]-V[kt])*0.014  
  }  
  kt<-kt+1  
 }  
 V<-c(V[1:(length(V)-1)],rep(30,25))  
 ssum<-sum(succes)  
 succes<-c(succes,rep(1,23),0,0)  
 datf<-data.frame(succes=succes,V=V)  
 #par(mfrow=c(2,1))  
 #plot(V,type="l",main=cat("Number of successes:", ssum))  
 tbl<-aggregate(x=datf$succes,by=list(datf$V),FUN=mean)  
 tbln<-aggregate(x=datf$succes,by=list(datf$V),FUN=length)  
 tbls<-aggregate(x=datf$succes,by=list(datf$V),FUN=sum)  
 tbl$cnt<-tbln$x  
 tbl$sum<-tbls$x  
 #Construction of PAVA estimates  
 #Volume  
 tbl$Group.1  
 #Isotone regression estimate  
 isoreg<-pava(y=tbl$x,w=tbl$cnt,decreasing=FALSE)  
 x_mu1<-max((1:dim(tbl)[1])[isoreg<=MEV])  
 mu1<-tbl$Group.1[x_mu1]  
 x_mu2<-which.min(abs(isoreg-MEV))  
 mu2<-tbl$Group.1[x_mu2]  
 mu3<-((MEV-isoreg[x_mu1])/(isoreg[x_mu1+1]-isoreg[x_mu1]))*(tbl$Group.1[x_mu1+1]-mu1)+mu1  
 MU_1[iter]<-mu1  
 MU_2[iter]<-mu2  
 MU_3[iter]<-mu3  
 tbl$id<-rep(1,length(tbl$cnt))  
 fourpar <- drm(sum/cnt ~ Group.1, id,weight=cnt,data = tbl, fct = LL2.2(names = c("Slope", "ED90")), type = "binomial")  
 try(EV90[iter]<-exp(ED(fourpar, c(90), interval = "delta",display="FALSE")[1]),silent="TRUE")  
 #plot(isoreg,xaxt="n",main=paste("PAVA, mu1:",round(mu1,2),"mu2",round(mu2,2),"mu3",round(mu3,2)),sub=paste("Number of successes:", ssum),xlab="Doses", ylab="EV")  
 #isoregplot<-pava(y=tbl$x,w=tbl$cnt,decreasing=FALSE,stepfun=TRUE)  
 #plot(isoregplot,add=TRUE,verticals=FALSE,pch=20,col.points="red",xaxt="n")  
 #axis(1, labels=as.character(tbl$Group.1), at=1:length(tbl$Group.1))  
 ANTAL[iter]<-length(P)  
 iter<-iter+1  
 }  
 summary(ANTAL)  
 quantile(ANTAL,c(0.9,0.95,0.99),na.rm=TRUE)  
 summary(MU_3)  
 quantile(MU_3,c(0.025,0.975),na.rm=TRUE)  
 #Example plot  
 par(mfrow=c(2,1))  
 ssum<-sum(succes)  
 plot(V,type="l",main=paste("Number of successes:",ssum))  
 plot(isoreg,xaxt="n",main=paste("PAVA, mu1:",round(mu1,2),"mu2:",round(mu2,2),"mu3:",round(mu3,2)),sub=paste("Number of successes:", ssum),xlab="Doses", ylab="EV")  
 isoregplot<-pava(y=tbl$x,w=tbl$cnt,decreasing=FALSE,stepfun=TRUE)  
 plot(isoregplot,add=TRUE,verticals=FALSE,pch=20,col.points="red",xaxt="n")  
 axis(1, labels=as.character(tbl$Group.1), at=1:length(tbl$Group.1))  
0 views0 comments

Recent Posts

See All

dplyr or base R

dplyr and tidyverse are convenient frameworks for data management and technical analytic programming. With more than 25 years of R...

Comments


bottom of page